
CMSC 451 Dave Mount

CMSC 451: Lecture 9
Greedy Approximation: Set Cover

Thursday, Sep 28, 2017

Reading: Chapt 11 of KT and Sect 5.4 of DPV.

Set Cover: An important class of optimization problems involves covering a certain domain, with
sets of a certain characteristics. Many of these problems can be expressed abstractly as the set
cover problem. We are given a pair Σ = (X,S), called a set system, where X = {x1, . . . , xm}
is a finite set of objects, called the universe, and S = {s1, . . . , sn} is a collection of subsets of
X, such that every element of X belongs to at least one set of S. Set systems arise in many
applications of science and engineering.

Undirected Graph: An undirected graph G = (V,E) is a set system where V constitutes
the universe, and the edges E are subsets of cardinality two.

Geometric set systems: The universe consists of n points in space, and the sets are the
subsets of points that are contained within some specified geometric shape (balls, cubes,
rectangles, triangles, etc.)

Wireless Coverage: The universe consists all the locations on a college campus, and for
each possible location of a wireless transmitter there is an associated region of the campus
that is covered by placing a wireless transmitter at this location.

A fundamental question involving set systems is determining the smallest number of sets
needed to cover the entire universe. A cover of S is defined to be a subcollection of sets
whose union covers X. For example, in Fig. 1(a), we elements of X are the black circles, and
the sets s1, . . . , s6 are indicated by rectangles. In this case there exists a cover of size three,
consisting of s3, s4, and s5 (see Fig. 1(b)). (The sets of this cover do not overlap, which is
sometimes called an exact cover. In general, the sets of the cover are allowed to overlap.)

s3 s4 s5

s1

s6

s2

s3 s4 s5

s1

s6

s2

(a) (b)

Fig. 1: Set cover. The optimum cover consists of the three sets {s3, s4, s5}.

Notice that the output of set cover is not a set, but rather a set of sets. If we think of the
sets of S as being indexed by the integers from 1 to n, then we can think of a cover C more
conveniently as a subset of {1, . . . , n}. This suggests the following definition.

Lecture 9 1 Fall 2017

CMSC 451 Dave Mount

Set Cover Problem: Given a set system Σ = (X,S), where S = {s1, . . . , sn}, compute a
set C ⊆ {1, . . . , n} of minimum cardinality such that

X =
⋃
i∈C

si

The set cover problem is a very important and powerful optimization problem. It arises in a
vast number of applications. Determining the fewest locations to place wireless transmitters
to cover the entire campus is an example. Unfortunately, the set cover problem is known to
be NP-hard. We will present a simple greedy heuristic for this problem.

How do we determine how good our approximation is? Given an input instance Σ = (X,S),
let O(Σ) denote an optimum cover (of minimum cardinality) and let G(Σ) denote the cover
produced by our greedy heuristic. Clearly, greedy cannot have fewer sets than the optimum,
and so we have |G(Σ)| ≥ |O(Σ)|. We say that G achieves an approximation ratio of ρ if
|G(Σ)| ≤ ρ|O(Σ)|, for any input Σ. Ideally, we would like ρ to be as small as possible,
say, a small constant. Unfortunately, the best that we can show for set cover is that ρ is
a slowly growing function of m = |X|, and in particular ρ = lnm. (This might strike you
as being rather weak, but there are compelling reasons from the theory of computational
complexity that logarithmic approximation ratio is the best that we might hope for assuming
that P 6= NP. With a bit more work, it is possible to improve this slightly to an approximation
ratio of ρ = (lnm′), where m′ is the maximum cardinality of any set of S.)

Greedy Set Cover: A simple greedy approach to set cover works by at each stage selecting the
set that covers the greatest number of uncovered elements. The algorithm is presented in the
code block below. The set C contains the indices of the sets of the cover, and the set U stores
the elements of X that are still uncovered. Initially, C is empty and U ← X. We repeatedly
select the set of S that covers the greatest number of elements of U and add it to the cover.

Greedy Set Cover
Greedy-Set-Cover(X, S) {

U = X // U stores the uncovered items

C = empty // C stores the sets of the cover

while (U is nonempty) {

select s[i] in S that covers the most elements of U

add i to C

remove the elements of s[i] from U

}

return C

}

We will not worry about implementing this algorithm in the most efficient manner. If we
assume that U and the sets si are each represented as a simple list of elements of X (each of
length at most m), then we can perform each iteration of the main while loop in time O(mn),
for a total running time of O(mn2).

For the example given earlier the greedy-set cover algorithm would select s1 (see Fig. 2(a)),
then s6 (see Fig. 2(b)), then s2 (see Fig. 2(c)) and finally s3 (see Fig. 2(d)). Thus, it would
return a set cover of size four, whereas the optimal set cover has size three.

Lecture 9 2 Fall 2017

CMSC 451 Dave Mount

s3 s4 s5

s1

s6

s2

(a) (b)

s3 s4 s5

s6

s2

(c)

s3 s4 s5

s2

(d)

s3 s4 s5

s1 covers 6 s6 covers 3 s2 covers 2 s3 covers 1

Fig. 2: The greedy heuristic. Final cover is {s1, s6, s2, s3}.

What is the approximation factor? The problem with the greedy heuristic is that it can be
“fooled” into picking the wrong set, over and over again. Consider the example shown in
Fig. 3 involving a universe of 32 elements. The optimal set cover consists of sets s7 and s8,
each of size 16. Initially all three sets s1, s7, and s8 have 16 elements. If ties are broken in
the worst possible way, the greedy algorithm will first select the set s1. We remove all the
covered elements. Now s2, s7 and s8 all cover eight of the remaining elements. Again, if we
choose poorly, s2 is chosen. The pattern repeats, choosing s3 (covering four of the remainder),
s4 (covering two) and finally s5 and s6 (each covering one). Although there are ties for the
greedy choice in this example, it is easy to modify the example so that the greedy choice is
unique.

s5

s6

s7

s8

s4 s3 s2 s1

{s5, s6}Opt:

Greedy: {s1, s2, s3, s4, s5, s6}

Fig. 3: Repeatedly fooling the greedy heuristic.

From the pattern, you can see that we can generalize this to any number of elements that
is a power of 2. While there is a optimal solution with 2 sets, the greedy algorithm will
select roughly lgm sets, where m = |X|. (Recall that “lg” denotes logarithm base 2, and
“ln” denotes the natural logarithm.) Thus, on this example the greedy heuristic achieves an
approximation factor of roughly (lgm)/2. There were many cases where ties were broken
badly here, but it is possible to redesign the example such that there are no ties, and yet the
algorithm has essentially the same ratio bound.

We will show that the greedy set cover heuristic never performs worse than a factor of lnm.
Before giving the proof, we need one useful technical inequality.

Lecture 9 3 Fall 2017

CMSC 451 Dave Mount

Lemma: For all c > 0, (
1− 1

c

)c

≤ 1

e
.

where e is the base of the natural logarithm.

Proof: We use the fact that for any real z (positive, zero, or negative), 1 + z ≤ ez. (This

follows from the Taylor’s expansion ez = 1 + z + z2

2! + z3

3! + . . . ≥ 1 + z.) Now, if we

substitute −1/c for z we have (1− 1/c) ≤ e−1/c. By raising both sides to the cth power,
we have the desired result.

We now prove the approximation bound.

Theorem: Given any set system Σ = (X,S), let G be the output of the greedy heuristic and
let O be an optimum cover. Then |G| ≤ |O| · lnm, where m = |X|.

Proof: We will cheat a bit. Let c denote the size of the optimum set cover, and let g denote
the size of the greedy set cover minus 1. We will show that g ≤ c · lnm. (Note that
we should really show that g + 1 ≤ c · lnm, but this is close enough and saves us some
messy details.)

Let’s consider how many new elements we cover with each round of the algorithm.
Initially, there are m0 = m elements to be covered. Let mi denote the number of
elements remaining to be covered after i iterations of the greedy algorithm. After i− 1
rounds there are mi−1 elements that remain to be covered. We know that there is a
cover of size c for these elements (namely, the optimal cover), and so by the pigeonhole
principal there exists some set that covers at least mi−1/c elements. Since the greedy
algorithm selects the set covering the largest number of remaining elements, it must select
a set that covers at least this many elements. The number of elements that remain to
be covered is at most

mi ≤ mi−1 −
mi−1
c

= mi−1

(
1− 1

c

)
.

Thus, with each iteration the number of remaining elements decreases by a factor of at
least (1− 1/c). If we repeat this i times, we have

mi ≤ m0

(
1− 1

c

)i
= m

(
1− 1

c

)i
.

How long can this go on? Since the greedy heuristic ran for g + 1 iterations, we know
that just prior to the last iteration we must have had at least one remaining uncovered
element, and so we have

1 ≤ mg ≤ m

(
1− 1

c

)g
= m

((
1− 1

c

)c)g/c
.

(In the last step, we just rewrote the expression in a manner that makes it easier to
apply the above technical lemma.) By the above lemma we have

1 ≤ m
(

1

e

)g/c

.

Lecture 9 4 Fall 2017

CMSC 451 Dave Mount

Now, if we multiply by eg/c on both sides and take natural logs we find that g satisfies:

eg/c ≤ m ⇒ g

c
≤ lnm ⇒ g ≤ c · lnm.

Therefore (ignoring the missing “+1” as mentioned above) the greedy set cover is larger
than the optimum set cover by a factor of at most lnm.

Lecture 9 5 Fall 2017

